Categories
游来游去 经济、IT观察与思考

数据分析职业病

分析是种职业病,融贯在每一分血液里,每一分骨髓里...去参加个Qcon看看人家的创意网站,然后心里各种痒痒,拉着思喆哥、堰平兄饭局讨论实现的原理也就罢了,最近只要一出门就习惯性的开始思考某些稍微“违背常理”或者“略显聪明”的现象...

比如这次去西安,在去的航班上,就开始思考起来了“航空公司的数据挖掘”....
-------------------回忆的分割线-------------
有些事情纯属职业病。这次上海飞西安坐的是南航的航班,一路折腾到飞机上就已经疲惫不已了,直接睡过去。

后面的一切毫无波折,如果不是临下飞机十几分钟的一段对话,我估计会对这段航行毫无记忆。只是突然间空姐的一句问候,"您是***女士么(我的本名)",让我第一反应是我不是你们的金银卡啊,这也开始问候了?...然后笑意盈盈的递给我一张会员申请表。"您虽然还不是我们的会员,但是您是我们的潜在会员。所以请您加入我们南航明珠俱乐部"...

我第一反应是,"潜在会员"这个是怎么分析出来的?目测我大概有一年的时间没有飞过南航(在过去的半年时间我似乎都完全没有飞过),难道他们有个"沉睡用户苏醒监测"?要不就是,正巧这次我累计乘坐南航的次数达到了他们分析的阈值(比如10次)?要不就是,每次坐南航我都累积东航,让他们终于忍无可忍了...还是说,他们真有一个customer life value model,算出来我对他们的潜在价值了?

蛮有意思的是,我曾经有段时间周周飞南航,他们却从来对我爱理不理,所以我猜测他们的模型里面对于"reactivated"的顾客有个很高的权重。

到最后,南航猜的准吗?准,有可能是我确实在东航还有一些里程可以挥霍。不准,则是我现在飞行大都是私人旅行了,基本不可能象以前做咨询时候出差那般频率了,所以我的潜在价值肯定没有模型上估计出来的高。如果这个模型进一步分析"公务旅行"还是"私人旅行",怕是效果会更好吧。不知道能不能通过机票代理来区分这两类客源...所以,准,却有点晚了。

当然对于垄断国企来说,这个CRM并不是那么重要,反正利润会一直在那里,国内的常客计划也发展不起来。只是感慨一下,这样的分析要是想做好,绝对离不开自己对于这项服务的亲身体验。只有飞的多了,才知道常客计划的最大引力和最关键时点。而后的分析,才会水到渠成吧?

职业病发作完毕...

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(五)

鉴于我上周写的[笔记(四)]让很多人反映太枯燥、太无聊(全是公式...可是这就是笔记嘛,又不是写科普文),我努力让这周的笔记除了公式之外多一点直觉和应用层面的点评。

其实[笔记(一)(二)]中说了很多回归和分类器的不同了,那么在经历了线性回归方法之后,就来说说分类器好了。我原来一直觉得回归和分类器没有什么本质不同的...主要是最常用的分类器logit和probit都是我在学计量的时候学的,那个时候老师只是简单的说,这两个和OLS都是一致的,只是我们想让预测值在0~1之内所以做一下变换。而且我们那个时候也不叫他们分类器,而是叫他们“离散被解释变量模型”。前几个月的时候,看data mining的东西,看得晕晕乎乎的,就跑去问精通此类模型的同事MJ,让他跟我科普了一下午为什么这两个模型大家更经常称之为分类器...汗颜啊,那个时候我才知道原来machine learning是先分supervised learning and unsupervised learning,然后才是 regression v.s. classification, and clustering...疏通了脉络之后,再看《The Elements of Statistical Learning》这本书,就觉得顺畅多了。以前只是零零散散的接触一个个孤立的模型,没有找出一个脉络串起来过,自然也就不知道分别适用于什么场景。

其实我挺想说的是,从econometrics到data mining,远远没有想象的那么简单。数学工具上或许很顺畅,但是思维上的转变还是需要时间和实践的。真是为难坏了我这个学经济学出身的孩子(其实话说回来,我好好的不去研究经济学,好奇什么data mining呀~只能聊以一句“殊途同归”来搪塞自己,对嘛,反正都是doctor of philosophy, 只要是科学,本质的思考方式应该是相通的)。不过搞清楚之后,还是觉得很好玩的——以前是雾里看花,觉得什么都漂亮;现在渐渐的能够分清楚这些美丽之间的差异了,也算是个小进步吧。

再有个小废话...记得上小学的时候,老师问大家“长大了想做什么呀?”,我们总是会特别有出息的回答“科学家~”。那个时候有门课叫做《自然》,老师总给我们讲各种各样的发明,让我们一度觉得这个世界上的问题都被解决完了,还当什么科学家啊。然后老师就给我们讲哥德巴赫猜想,大意是世间还有那么几个悬而未决的皇冠问题,等待大家长大了去攻克。后来,越读书越发现,有那么多问题人们是不知道答案的,只是从 ambiguity -> uncertainty -> possibility -> probability -> certainty (law)一步步的走下去。有那么多问题,其实都是悬而未决的哲学问题,等待着聪明的大脑去回答。这也是越读书越觉得兴奋的缘故吧,越来越多的时候老师会被问倒,然后说“不知道”...然后好奇心就又开始勃勃生长...然后又发现更多的很好玩但没有答案的问题...周而复始,有意思的很。

-------满足大家的八卦之心之后,笔记开始-------

线性分类器

对应原书第四章。

先是来一点直觉上的东西:分类器顾名思义,就是把一堆样本归到不同的类别中去。那么这类模型的几何直觉是什么呢?很简单,空间分割嘛。最直白的,我们有一群人,组成了一个大的群体。然后现在要把大家归为男女两类,那么空间自然就是被分割为两个子空间——男和女了。

线性分类器是什么呢?分割男和女的时候,可能分割是三个一群,五个一簇的,所以非要画分割的界限的话,八成是山路十八弯的...我们以前说过,这类的模型问题就是可能复杂度比较高(比如参数的个数较多),导致就算训练误差小,测试误差不一定小。所以呢,我们希望这个分割界限是直线的(二维平面下)、或者平面的(三维空间中),或者超平面的(高位空间中),这样就比较清晰明了的感觉了。

线性分类器:logit模型(或称logistic regression)

这里也不完全是按照吴老师上课讲的东西了,因为回头再看这本书会发现书中还有一些很好玩的直觉很强的东西。错过不免可惜,一并收纳。

首先换一下记号~我们在前面都用代表被解释变量,从现在开始对于分类问题,我们改用

logit模型下,考虑最简单的分为两类,我们有

所以有

这样,分别属于这两组之间的比例就可以找到一个线性的边界了(注:log为单调变换~不影响结果)。这样变换的目的其实无非是,保证,而且两个比例之间存在着一种线性的、或者可以通过单调变换成为线性的关系。类似的当然是大名鼎鼎的probit模型,思路是类似的。

损失函数

显然线性分类器下,在有很多类的情况中,损失函数定义为OLS的残差平方和是没有多大意义的——分类取值只是一个名义量。所以,这里用0-1损失函数:如果,那么损失函数=0;否则,就是没预测准,损失函数=1。写为数学形式,就是损失函数定义为:

所以我们的目标就是,最小化损失函数的期望:

(条件期望迭代)。

LDA:linear discriminant analysis(贝叶斯意义下)

从贝叶斯的角度,我们有

为k出现的概率。

假设X服从联合正态分布,那么我们有

再假设协方差矩阵,所以我们比较两类的时候有:

这样就形成了一个x的线性方程,所以我们找到了一个超平面,实现了LDA。

实践中我们需要估计联合正态分布的参数,一般有,其中为分类k出现的样本数;,即这个样本中,x观测值的平均数;

Fisher视角下的分类器

Fisher提出的观点为,分类器应该尽量使不同类别之间距离较远,而相同类别距其中心较近。比如我们有两群,中心分别为

,那么我们希望尽量大,同时群内方差

尽量小。通过对x进行投影到,我们可以化简的得到

。这样一来,我们的准则就是:

由于是正定阵,所以我们可以进一步写为

其中的特征向量。最终可以求的,最优的正是的最大特征向量。

说实话,我对LDA(或者QDA)的理解都非常有限...这本书里面还有一节说到LDA和logit怎么选,我也是大概看了一下没有特别的看明白...笔记只是如实记录,海涵。暂时还不知道讲到Fisher到底是想讲什么...理解力好有限,唉。

------最后的碎碎念------

除了统计学习精要,Coursera的Model Thinking也终于结课了,做完了期末考试卷,感觉心里空空的。这门课真的是开的非常深入浅出,覆盖了这么多学科、问题的各种模型,非常有助于逻辑思考和抽象。只是多少有些遗憾的,很多东西来不及细细回味,听过了视频就忘了,没有努力的去理解那些模型背后的逻辑。这也是导致最终的期末考试做的不怎么好的缘故——我不想去翻课堂视频或者笔记,只是想考验一下自己对于这些模型的理解和记忆能力。事实证明,除了那些跟经济学或者数学紧密相关的模型,其他的都多多少少记得不是那么清晰了。过阵子应该好好整理一下这门课的笔记,算作是一个良好的回顾吧。

不知道为什么,工作之后再去学这些东西,真的感觉力不从心的时刻多了很多。这半年只有这么区区两门课,就让我觉得有时候不得不强迫自己一下赶上进度,强迫的手段之一就是在落园开始写连载(大家容忍,谢谢~)。不过为了保持一个基本的生活质量,还是应该不时看看这些新东西的,要不生活都腐朽了。

Categories
Uncategorized 事儿关经济

R会议小记

今年的R会又热热闹闹的开了两天,一切进行的还算顺利,没有大的波折。大家玩的很开心,各种旧友重逢相见恨晚按下不表。只说几点我的体会:

1. 数据挖掘越来越热,却越来越觉得泡沫。今年R会议创纪录的收到了接近500人报名,实际到场领取材料350人。会场一直有人需要站着听,这是以前没有的。R这两年越来越热,说明业界的需求上来了,用R的人越来越多毕业了,进入企业了。然而听了很多演讲,却没有感觉有让人“惊喜”。大家在重复的炒有限的东西。不见新意。

2. 工具越来越热,只能说明用的人越来越多,而不见得是用法越来越聪明。大数据热的一塌糊涂,大家关注的却只是怎么能实现计算,而少有从根本思想的角度提出创造性的方法的。这让人不免觉得疲惫。

3. 林大师兄说的有句话让我印象深刻——用复杂的方法解决复杂的问题那是做研究,用简单的方法解决复杂的问题是在业界。一路看来,被业界认可的方法,大都是simple and elegant的,只可惜翻来覆去就那些,看久了就审美疲劳了。

4. 大多数分析只能说是typical的完成任务,有灵性的分析不多。张翔的“短文本分类实践”在这个意义下,是可圈可点的有灵性的分析之一。在现有的算法上,如何聪明的排列组合优化改造,这不仅仅考验的是分析者对于模型的理解,更多是对于业务需求的洞见。再好的模型,也得多少按需定制一下,否则总让人觉得空洞无物。

5. 机器学习是小聪明而不是大智慧。我这么说坐等被骂,不过确实是思喆大哥的一句点评醍醐灌顶——机器学习的人从来不关心假设检验,尤其是对于分布的假设。反正计算机可以算,那么就去算好了。很多算法直觉上过得去,就可以了。我总感觉这东西,要么大家玩够了破灭一下,要么有人从头建造一些夯实的基础,真正繁荣。现在还是一个初生牛犊的混沌阶段吧。比较好的应用,除了google发起的那几类,大概也很难有本质上的突破了。

6. 业界是 short sighted,这个不用多说了。

7. 我对整个数据分析的行业未来持负面预测。有泡沫的感觉。可是,明明自己还在混这口饭吃...不过至少这口饭还能吃个十年二十年吧,不怕不怕。

8. 以前总觉得建模什么的最重要,最刺激,最有成就感。现在感觉,其实很多时候解决问题的能力大家都有,而发现问题却不是每个人都擅长。也劝最近打算从学校里面出来的朋友们,不要一上来就跟招人的企业说“我希望做统计建模”blablabla...其实有的时候那些fancy的模型提高的可能只是最后的5%,而为此牺牲的效率有可能有着更高的成本。至少我现在,有点越来越问题导向了。还有,其实很多时候,在学校里大家对于模型的理解还都是很肤浅的,纸上谈兵的。其实自己根本把握不住那些东西。最近好多次深深感觉,我以前觉得自己熟练把握的很多模型都不见得可以迅速的应用到实际的业务场景中去。在不断的跟同事、老板、partner讨论的过程中,才是真正的去深入的理解那些模型的过程。所以,一句聊以自勉的话:还是从简单的做起吧。

几乎没说几句好话,见谅。好玩的东西就是那么多,天天玩天天看不免觉得疲惫。不过平心而论(与我的工作单位无关),eBay对于数据的理解和应用整体水平绝对是行业前列的。能把一个数据分析的大问题break down到若干几乎独立的小问题,这就说明整体的框架已经成熟并足以支撑业务了。这样的情况下,作为个人可能接触的好玩的事情会越来越少,因为几乎相似背景的人都可以很快的胜任日常的工作(这也是我对大企业最佩服的一方面,分工确实细致,有利于提高整体效率),另一方面也是学习如何化整为零的好去处。每个人都有自己想要的人生,都会选择适合自己的地方。只是这一次很多人一致评价,觉得我来了eBay之后更快乐了——这怕是最好的褒奖了吧。

----对于未来R会议的期许-----

我们号称要做“学术会议里面最文艺的,文艺里面最学术的”,那么总要多多的有些有灵性的分析。R语言基础培训可以淡出R会议的舞台了。

此外,力争联系更多的大牛~要有学术会议范儿嘛 ^_^

Categories
事儿关经济

中文文本聚类小尝试(Text Clustering in R)

众所周知的,我会经常百无聊赖的玩一些比较好玩的东西。比如画画旅行地图啦,恶搞一下COS的版猪啦,抓抓新浪围脖啦。这不R大会又要开始了么,有一点点小数据也要玩玩啦。比如,呃,君不见周六上午三场演讲都是文本挖掘的,那我不研究一下文本挖掘怎么去混演讲听啊~自己动手先。

A nearby galaxy cluster about 65 million light years from Earth.
文本挖掘自然也有有个情景嘛。这不正好会议要排日程表嘛,那得把我们16个讲座分成四个半天,每天大约4场。这个应该怎么分呢?从直觉上来说,听众肯定是希望相关的话题放在相邻的时间,这样他们就可以选择自己感兴趣的时间段去听啦,不用在那里一坐两天。同时也便于之后的集中讨论嘛。于是这个目的就是:根据演讲的题目、摘要和关键字,进行聚类。这显然是一个无监督的学习嘛,我又没有一个特定的结果变量。

那么首先,自然是要对中文文本进行分词啦。这个嘛就可以偷个懒,直接用现成的R包rmmseg4j。(中间鼓捣若干编码问题,不赘述...)

然后就是聚类。这里继续偷懒,调用现成的文本处理包tm,可以直接生成文本词对应的矩阵。比如,一个编号为1的句子是 “我 在 中国”,编号为2的句子是“我 爱 中国” 那么生成的矩阵就是:

句子 我 在 中国 爱

1 1 1 1 0

2 1 0 1 1

就是说,把每个词都作为一个变量,然后统计它在每个句子出现的次数作为变量值。这样一来,如果总共有10个句子,有不重复的100个词,那么就会给出一个10×100的矩阵了。

有了这个矩阵之后,我们就相当于知道了每个个体的观测特征,那么就可以聚类了。比较简单的,可以直接算余弦相似度(比如google识别相似新闻的做法);也可以调用kmeans聚类。这里我们的摘要直接不会有特别多的相似,所以余弦相似度的区分度可能会不好。那么就先试试kmeans吧。

到这里,代码如下:

#读数据
library(xlsx)

presentations <- read.xlsx("r-presentations.xlsx", sheetName="Sheet1") #读excel数据

summary(presentations)

presentations$Title <- as.character(presentations$Title) #转文本

Encoding(presentations$Title) <- "UTF-8" #转换编码

presentations$Title

presentations$Abstract <- as.character(presentations$Abstract)

Encoding(presentations$Abstract) <- "UTF-8"

presentations$Abstract

presentations$KeyWords <- as.character(presentations$KeyWords)

Encoding(presentations$KeyWords) <- "UTF-8"

#分词

library("rmmseg4j")

presentations$raw_word <-with(presentations,paste0(KeyWords,Abstract, sep=";")) #连接所有标题、摘要、关键字

presentations$raw_word <- with(presentations, str_replace_all(raw_word, "R","")) #去掉r

presentations$seg <- mmseg4j(presentations$raw_word) #分词

#kmeans聚类

library("tm")

presebtation_seg <- Corpus(DataframeSource(presentations[,c("Title","seg")])) #转换到tm专用格式

presebtation_term <- TermDocumentMatrix(presebtation_seg, control = list(stopwords = TRUE)) #生成词频矩阵

presebtation_term <- t(as.matrix(presebtation_term)) #转换为matrix并转置

summary(presebtation_term)

presebtation_kmeans <- kmeans(presebtation_term, 7) #kmeans聚为7类

为什么我会在kmeans里面聚成7类呢?理论上只是要聚4类嘛。可是直接聚四类的话,区分度没那么好,一半多的演讲都聚到一类去了,没法安排嘛~所以只能增加聚类的个数,看看到时候再把小类合并。

聚成7类的结果如下:

Title cluster_result
R语言在eBay搜索引擎反馈与测试中的应用 1
营销分析模型及其在广告界的应用 2
系统生物学和转换医学中的R语言 + R in Systems Biology and Translational Medicine 3
R/Bioconductor在生物多维组学数据整合中的应用 3
R Case Study from EBAY APD 4
网络用户浏览路径分析 4
啤酒与尿布的当代版--商品分析在电子商务中的应用 4
基于RHadoop的关联规则挖掘 5
模型预测的利器——随机森林 5
基于R的地理信息系统 (R-based GIS) 6
R语言和其他计算机语言的混合编程 6
ggplot和knitr包简介 6
R与面向对象统计分析 6
twitteR包入门和应用 6
短文本分类器与电商品类数据挖掘 7
R语言环境下的文本挖掘 7

比较理想的是,聚类之后识别出来了两个文本挖掘的演讲...还有一堆R包的演讲。但是还是没法安排演讲嘛。看到这里,大家有没有发现,这样做最大的问题就是,聚类的时候把一些没有实际意义的虚词也聚类进来了,比如“的”;还有一些几乎所有演讲都会涉及的词,比如“R”和“分析”。这些词在其中是没有意义的,也会影响我们算dissimilarity的结果——这到底是按内容聚类啊,还是按作者的行文风格聚类啊?此外,虽然我们规定演讲摘要大都在100-200字,但还是有长有短,到目前我还没有对文本的出现频率用语句长度来加权...这也是不科学的嘛。那些原来在Google搜搜里面排名作弊的,不就是同样的内容复制10几次,来提高关键词出现频数(而不是频率)嘛。

为了解决这些问题,首先就是要去掉没有意义的虚词。这个不算太麻烦,把一些常用的虚词和转折词连接词之类去掉就可以了。其次,要去掉每个演讲都有的词。这里虽然可以一个个去看,不过简单一点,我们先统计一下词频嘛:

#高频词统计

presentations$seg2 <- unique((strsplit(presentations$seg,split=" "))) #断词

all_key_words <- iconv(unlist(presentations$seg2), from="UTF-8", to="GBK") #转换到GBK编码

all_key_words_fre <- as.data.frame(table(all_key_words)) #统计词频

names(all_key_words_fre)

all_key_words_fre <- arrange(all_key_words_fre,desc(Freq)) #按词频排序

all_key_words_fre[1:20,]$all_key_words #100个高频词

然后看一下TOP 20高频词:

1 的 105

2 数据 27

3 分析 24

4 和 21

5 图 18

6 在 17

7 挖掘 15

8 用户 15

9 应用 14

10 分类 13

11 了 13

12 语言 13

13 介绍 11

14 是 11

15 文本 11

16 试验 10

17 平台 9

18 ebay 9

19 案例 8

20 模型 8

所以看来,“挖掘”,“用户”,“文本”,“试验”,“平台”,“ebay”,“案例”,“模型”等等还是比较有区分度的词。按照这个思路,选择有限的几十个词重新分类,效果可能会有所改善。

此外,鉴于样本量不大(16个),所以可以人工的去看每个简介,手动标注tag作为聚类的变量。事实上,最后我还是这么做了一下,来在上述原始聚类结果上进行了一下重新的分组处理,形成了4大类。但是这个东西也不完全是可以直接用的,总要考虑时间之类的其他因素。最终的结果更多是人工思考的排序,估计李舰哥在确定顺序的时候更多的是按照经验和以往R会议的风俗。算法虽然好玩,但毕竟捕捉的还是人的思维模式,暂时没办法完美的取代吧。不过其实也差的不远呢。

最终人工结果:

冯兴东:R语言和其他计算机语言的混合编程

刘思喆:R语言环境下的文本挖掘

张翔:短文本分类器与电商品类数据挖掘

沈羽、周春英:R语言在eBay搜索引擎反馈与测试中的应用

周扬:基于R的地理信息系统

肖凯:twitteR包入门和应用

陈钢:系统生物学和转换医学中的R语言

杭兴宜:R / Bioconductor在生物多维组学数据整合中的应用

陈逸波:基于RHadoop的关联规则挖掘

李忠:R Case Study from EBAY APD

洪健飞:啤酒与尿布的当代版——商品分析在电子商务中的应用

廖明:营销分析模型及其在广告界的应用

肖嘉敏:网络用户浏览路径分析

刘成昊:模型预测的利器——随机森林

王雨晨:R与面向对象统计分析

魏太云:R基础作图与可重复研究

纯属好玩而已~不过R会议也举行了整整五届了,每次15个演讲的话也有15*9=135个演讲了。在这个样本量下,如果我们要出个论文集什么的,倒是可以直接用聚类的办法划分chapter了...嘻嘻。

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(二)

继续一周一次的课堂笔记 昨天去晚了站着听讲,感觉好好啊,注意各种集中。想想整个教室里面就是我和老师是站着的,自豪感油然而生。

第二次课讲的东西依旧比较简单,是这本书第二章的前半部分。作为一个好久之前已经预习过的孩子,我表示万分的得意(最小二乘法难道不是三四年前就学过的?话说以后我再面人的时候,就让他推导最小二乘估计量,嘻嘻...考验一下基本功)。

------------原谅我的废话,笔记开始------------

简单预测方法:最小二乘法(以下沿用计量经济学的习惯,简称OLS)

OLS实在是太普遍了,我就不赘述细节了。OLS的思想就是,基于已有的样本信息,找出一条直线,让预测值与真实值之间的残差平方和最小,即最小。其中,为真实的样本观测值(已有样本),而是OLS的预测值。用图来讲的话,X为一维向量的时候,就是用一条直线来最好的拟合各个样本点。

这里就很明显了,首先OLS假设是一条直线。那么就是一个参数模型,即我们需要假设一个未知的参数,构成一个线性方程,然后再去估计的值。然后呢,直线会有很多条,所以我们要找到一个目标——比如这里,就是最小化残差平方和RSS。换言之,我们寻找的就是最优的向量使得RSS最小。

解这个最优化问题很简单,我就不重复了。最后解得的最优估计量为:

这里写成矩阵形式,比较简单。X为一维向量的时候,可以改写成形式,我个人不大喜欢,就不展开了。

简单预测方法:K近邻(k nearest neighbor)

K近邻的思想就更简单了。不就是想预测某个点x对应的y么?那么就把它的邻居都找来,平均一下好了。不是有句话叫做什么“一个人的收入就大概是他的圈子收入的平均值么?”

所以 ,这里表示点x的K近邻。至于这个近邻怎么定义嘛,嘻嘻,很简单啊,欧几里德距离就可以嘛~

评语:吴老师对于这两个算法的直观评价是,OLS呢就是勤奋的学生,预测前先做足功课,预测的时候只要知道X,噼里啪啦一下子y就估计出来了。然而knn则是一个临时抱佛脚的学生,预测的时候开始找自己的k近邻,然后把它们平均一下就好了。哈哈,大意如此,大家可以体会一下这种精神。我个人感觉呢,OLS属于以不变应万变的,而knn则是见机行事的。

统计决策理论(Statistical Decision Theory)

说了这么多,这个模型好不好到底怎么判读呢?凡事总得有个标准呢。这一系列的标准或者说准则,就是统计决策理论了。

首先呢,大致我们需要对X,Y有个分布上的描述:用记作向量的联合分布,然后为其对应的密度函数。之后为了估计Y,我们会有很多很多模型,即各种,而这些组成的函数空间记为

然后我们定义一个损失函数,比如在均方误差意义下,,这样就有了一个选择的标准——使得损失函数的期望最小:。接下来就是,到底在空间里面,哪一个最符合这个标准呢?

首先自然是把联合分布变为条件分布。这个idea显而易见——我们总是知道X的(原谅我吧,全中文确实比较难写,偶尔穿插英文一下 ^_^)。所以conditional on X,我们就有了

去解最小化问题,最终我们得到的就是在每个点X上, 。通俗的讲就是,对于每个点预测,把和它X向量取值一样的样本点都找出来,然后取他们的平均值就可以了。很直观的不是么?这里也有点最大似然的想法呢——比如预测一个男孩的身高,最保险的就是把和它同龄的其他男孩的身高平均一下,不是么?

但是说来简单啊,很多时候都是未知的,根本无法计算嘛。所以只能近似:

  • 回忆一下knn,就是放松了两点:1) 取的是x的近邻,而不一定是x; 2)用样本平均数代替了期望
  • 而OLS呢,也是最后在这里,用样本平均代替了期望。

近似嘛,自然有好的近似和不好的近似。很显然的,当样本比较大、尤其是比较密集的时候,x的邻居应该都离x很近,所以这个误差可以减小;此外,当样本很大的时候,根据大数定律,平均数收敛于期望。所以,这两种算法应该说,都在大样本下会有更好的效果。

模型选择、训练误差与测试误差、过拟合

这里讲的比较简单。模型选择就是的选择,即选择哪一类函数空间,然后再其中找/估计最优的。很显然,如果只有若干个有限的样本,我们总能把各个样本用直线或者曲线依次连起来,这样的话就有无数个f可以作为此问题的解。显然这不是我们想要的——这样的称为“不设定问题”,即可能无解、可能多个解、还可能因为一点点X的变化导致整个解的解答变化。因此我们需要先设定一个解的类别。

训练误差:预测模型估计值与训练数据集之间的误差。RSS就是一个典型的训练误差组成的残差平方和。

测试误差:用训练集以外的测试数据集带来的误差,显然我们更关心的是测试误差——训练总能训练的很好,让损失函数期望最小,然而测试集则不一定这样。一般说来,测试误差>训练误差。

过拟合:选择一个很复杂的f,使得训练误差很小,而实际的测试误差不一定小。最极端的就是刚才说的,把训练集的点一个个依次连起来...训练误差肯定是0是不是?

我们关心的自然是怎么降低测试误差。显然这东西会跟训练误差有关,但是它还跟f的复杂度有关。最最棘手的就是,f的复杂度是一个难以衡量的问题。早期的研究有用自由度来衡量这个复杂度的,但是也不是那么的靠谱...后面的有人鼓捣出来PAC(使得近似正确的概率最大——吴老师原话),还有一个VC来衡量复杂度——但几乎实践中无法计算,没几个计算出来的。嗯,水很深哇。